Become a member
Become a member

or
Continue with Google
Log in
Log in

or
Log in using a Google account
learning
Comment

Sensitivity and Efficiency

Speaker specifications explained - Part 5
Share this article

Knowing how much power a speaker can handle doesn't tell you anything about how much SPL it can deliver.

View other articles in this series...

Part of the signal’s energy is dissipated along the way. In a classic loudspeaker, the signal makes the voice coil move in a magnetic field, setting the diaphragm in motion to modify air pressure. Unfortunately, a good share of the energy disappears in the form of heat when passing through the coil and magnets. Transforming electrical energy into mechanical and then acoustical energy entails, more or less, the significant loss of part of it, depending on the speaker and its enclosure. So, to be able to compare two speakers, you need to know how much SPL they can deliver with the same electric power.

A definition

The sensitivity of a speaker indicates the SPL it can deliver, under test conditions, depending on the power it receives. It is specified as sound pressure level (dB SPL) referenced to an input of 1 watt (1W), or 2.83 volts, or even less, at 1 meter (1m) on the reference axis.

DSP Sensibilité

The notion of efficiency is similar, conceptually speaking: it expresses the relation between output power delivered and the electrical power received. It is expressed in terms of a percentage or ratio (10% corresponds to a ratio of 0.1). The efficiency for most speakers is below 5%. Air resists rather well the action of a speaker.

Considering that doubling the electrical power makes the SPL increase in 3dBs, a speaker featuring a sensitivity of 92dB / 1W @ 1m amplified with an input power of 100W will deliver an equivalent SPL to a speaker whose sensitivity is 95dB / 1W @ 1m fed with an input power of 50W. From this it’s easy to tell that knowing the power handling of a speaker without its sensitivity doesn’t allow you to determine the volume it will produce. On the other hand, if you have both, you can determine what is the theoretical maximum level it can deliver.

Why 2.83 volts?

Power (in watts) depends on impedance, which changes with frequency. So, in order to hold a constant power of 1W during the test, the signal voltage needs to be adjusted according to the speaker and the frequency range tested. And, to make things easier, it’s better for the variables to depend on the speaker being tested, not on the signal. So, instead of characterizing the test signal by its power (1W), which is nothing but a value derived from the voltage, it’s better to use a fixed voltage value (2.83V) and measure what the speaker can deliver with that.

The relationship between power (P) and impedance (Z) is P = U2/Z. With 2.83V and an impedance of 8Ω, you get 2.832 V / 8Ω = 1W. For 4Ω: 2.83V yields 2 W. So, a speaker with a nominal impedance of 4Ω will be more efficient if it can deliver 92dB / 1W @ 1m than if it delivers 92dB / 2.83 V @ 1m (in which case it receives 2W). You could say that the use of a 2.83V rating “favors” 4Ω speakers, since they receive more electrical power than 8Ω speakers at the same voltage. So, besides the rating in the form “xdB / 2.83 V @ 1m, ” you should always take into account the Impedance. The more rigorous logic of the rating in volts is favored to the expression in watts, but, as you will see, there are equivalents between both of them.

Maximum level

Max SPL

On some speaker spec sheets you can find a maximum sound pressure level rating (in dB SPL). Which is nothing more than the peak level obtained with the maximum amplification power (specified by the manufacturer). And it can be calculated if you have the speaker’s sensitivity and the power of the amplifier. It is often provided to facilitate the modeling of a system in a real situation. With this figure and a bit of knowledge of the decibel scales, it’s easy to estimate the theoretical SPL you’ll get depending on the distance to the speaker. The short, and simplified, version estimates that you lose 6dB whenever you double the distance (with a spherical wave). This allows you to determine the maximum SPL the listener will be exposed to depending on the distance to the speaker.

**Attenuation, in decibels, depending on the distance to the source, in meters.

 

← Previous article in this series:
Power Handling
Next article in this series:
Distortion →

Would you like to comment this article?

Log in
Become a member
cookies
We are using cookies!

Yes, Audiofanzine is using cookies. Since the last thing that we want is disturbing your diet with too much fat or too much sugar, you'll be glad to learn that we made them ourselves with fresh, organic and fair ingredients, and with a perfect nutritional balance. What this means is that the data we store in them is used to enhance your use of our website as well as improve your user experience on our pages and show you personalised ads (learn more). To configure your cookie preferences, click here.

We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent
These are cookies that guarantee the proper functioning of Audiofanzine and allow its optimization. The website cannot function properly without these cookies. Example: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).
Google Analytics
We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it.
Advertising
This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.

We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent

These are cookies that guarantee the proper functioning of Audiofanzine. The website cannot function properly without these cookies. Examples: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).

Google Analytics

We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it. When this parameter is activated, no personal information is sent to Google and the IP addresses are anonymized.

Advertising

This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.


You can find more details on data protection in our privacy policy.
You can also find information about how Google uses personal data by following this link.