Log in
Log in

or
Learning
Comment

Distortion

Speaker specifications explained - Part 6

In this final installment regarding speaker specs, I'll address distortion. It's interesting to understand why it's a spec that's seldom specified by speaker manufacturers, unlike with amps, which always include it.

View other articles in this series...

Distortion on its own terms

The basic principle of a sound reproduction system is to reproduce an audio signal as faithfully as possible, avoiding any signal degradation. In this case, we’re not talking about distortion as a deliberate effect. Distortion appears when the output signal is altered with regard to the input one (not considering the overall increase in volume). There are several types of distortion, depending on the effects they produce: Linear distortion and non-linear distortion (each of them with its own sub-categories).

Linear distortion: frequency and phase response

Linear distortion includes alterations in terms of frequency response and phase. If the amplitude of all frequencies isn’t rendered with the same accuracy and the response time isn’t the same for all frequency bands, then the signal is considered to be distorted. This type of distortion is called “linear” because it doesn’t generate any new frequencies, i.e. the frequencies at the output are the same as the ones at the input, you only need to consider the differences in amplitude and phase. 

06 A Little Princess Amplitude small
Excerpt from Loudspeaker magazine, March 2013

Frequency and phase response are plotted in curves. An ideal response means that there are no differences between source and output, and the latency is the same for the entire frequency range reproduced (phase doesn’t depend on frequency). At least that’s what the theoretical model says, but it’s hardly achievable, especially if you want to cover the entire hearing range. Lots of parameters come under consideration. Speakers, enclosures and filters are complex products and each of them contributes, in its own way, to create a bit of distortion.

Graph taken from a hi-fi speaker depicting the frequency (blue) and phase (red) response curves. The dB SPL reading on the left is meant to help you read the frequency response. The angle (in degrees), to the right, corresponds to the phase response. At the bottom is the frequency in Hertz.

Non-linear distortion: harmonic distortion

Periodic signal

An audio signal can be broken down in repetitive cycles. The speed at which these cycles repeat is called frequency. The length of a single cycle is called a periodNon-linear distortion adds to the output signal frequencies that were not originally present in the input signal. There can be both harmonic and non-harmonic frequencies added. A harmonic is a whole number multiple of the root frequency. For instance, the second harmonic of a G at 392Hz is 784Hz (392 × 2), the third harmonic is 1568Hz (392 × 3), etc. A musical sound (a periodical sound, that is) has a fundamental frequency (the main wavelength), which characterizes the pitch of he note, and harmonics (proportional wavelengths), which are not as predominant but nevertheless add a lot to the timbre of a sound.

06 C KH420 THD 100 510
THD curves of a Neumann KH420 speaker. Source: Neumann documentation

Using a pure wave (without harmonics, like a sine wave) as source signal, it’s easy to find the harmonic distortion present at the output. You then have to sweep the entire frequency range to get a set of contour lines (one per each harmonic measured). The Total Harmonic Distortion (THD) is indicated as a ratio between the level of the harmonics and that of the fundamental. It is expressed as a percentage or in dB, together with the overall volume at which the measurement was made, as well as a frequency range. For example: THD = 3% @ 90dB SPL (100 Hz – 20 kHz). It’s interesting to note that, in psychoacoustic terms, the sense of degradation of a signal isn’t proportional to the THD rate. For instance, the second harmonic in particular is often considered to add “roundness” to a sound.

On the image to the left you can see the THD curves of a Neumann KH420 speaker. In violet: total harmonic distortion. In red: second harmonic. In green: third harmonic. On the left side is the difference with the fundamental. At the bottom, the frequency. Since the second harmonic of 10kHz is 20kHz, the upper limit of human hearing range, the curve stops at 10kHz

Non-linear distortion: intermodulation

Things get a bit more complicated when the signal source is made up of several notes played simultaneously, each with its own fundamental. In this case, besides harmonic distortion you also get intermodulation distortion (IMD), in other words, frequencies that aren’t whole-number multiples of the fundamental frequencies present. They have no musical correlation to the fundamental and, hence, significantly degrade the listening quality. The intermodulation distortion rate is never specified in the specs of loudspeakers (except for experimental purposes). Intermodulation varies so much depending on the source signal that the results aren’t very significant.

Generally speaking, speaker catalogs are pretty scanty when it comes to distortion measurements. They aren’t easy to make, the test signal to measure IMD isn’t standardized and, since speakers are the stage in the audio chain that add more distortion, manufacturers don’t seem to be too eager to shock their clients… The THD rate of a speaker can easily amount to 5%, and even more in the lower frequencies. In comparison, solid-state amps have a THD of < 0.1% across the entire frequency spectrum.

← Previous article in this series:
Sensitivity and Efficiency

Would you like to comment this article?

Log in
Become a member
cookies
We are using cookies!

Yes, Audiofanzine is using cookies. Since the last thing that we want is disturbing your diet with too much fat or too much sugar, you'll be glad to learn that we made them ourselves with fresh, organic and fair ingredients, and with a perfect nutritional balance. What this means is that the data we store in them is used to enhance your use of our website as well as improve your user experience on our pages and show you personalised ads (learn more). To configure your cookie preferences, click here.

We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent
These are cookies that guarantee the proper functioning of Audiofanzine and allow its optimization. The website cannot function properly without these cookies. Example: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).
Audience analysis (Google Analytics)
We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it.
Advertising (Google Ads)
This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.
Marketing (Meta Pixel)

On our websites, we use the Meta Pixel. The Meta Pixel is a remarketing pixel implemented on our websites that allows us to target you directly via the Meta Network by serving ads to visitors of our websites when they visit the social networks Facebook and Instagram. The meta pixel are code snippets which are able to identify your browser type via the browser ID - the individual fingerprint of your browser - and to recognise that you have visited our websites and what exactly you have looked at on our websites. When you visit our websites, the pixel establishes a direct connection to Meta's servers. Meta is able to identify you by your browser ID, as this is linked to other data about you stored by Meta on your Facebook or Instagram user account. Meta then delivers individualised ads from us on Facebook or on Instagram that are tailored to your needs.

We ourselves are not in a position to identify you personally via the meta pixel, as apart from your browser ID no other data is stored with us via the pixel.

For more information about the Meta Pixel, the details of data processing via this service and Meta's privacy policy, please visit Meta Privacy Policy - How Meta collects and uses user data for Facebook and Meta Privacy Policy - How Meta collects and uses user data for Instagram.

Meta Platforms Ireland Ltd. is a subsidiary of Meta Platforms, Inc. based in the USA. It cannot be ruled out that your data collected by Facebook will also be transmitted to the USA.


We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent

These are cookies that guarantee the proper functioning of Audiofanzine. The website cannot function properly without these cookies. Examples: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).

Audience analysis (Google Analytics)

We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it. When this parameter is activated, no personal information is sent to Google and the IP addresses are anonymized.

Advertising (Google Ads)

This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.

Marketing (Meta Pixel)

On our websites, we use the Meta Pixel. The Meta Pixel is a remarketing pixel implemented on our websites that allows us to target you directly via the Meta Network by serving ads to visitors of our websites when they visit the social networks Facebook and Instagram. The meta pixel are code snippets which are able to identify your browser type via the browser ID - the individual fingerprint of your browser - and to recognise that you have visited our websites and what exactly you have looked at on our websites. When you visit our websites, the pixel establishes a direct connection to Meta's servers. Meta is able to identify you by your browser ID, as this is linked to other data about you stored by Meta on your Facebook or Instagram user account. Meta then delivers individualised ads from us on Facebook or on Instagram that are tailored to your needs.

We ourselves are not in a position to identify you personally via the meta pixel, as apart from your browser ID no other data is stored with us via the pixel.

For more information about the Meta Pixel, the details of data processing via this service and Meta's privacy policy, please visit Meta Privacy Policy - How Meta collects and uses user data for Facebook and Meta Privacy Policy - How Meta collects and uses user data for Instagram.

Meta Platforms Ireland Ltd. is a subsidiary of Meta Platforms, Inc. based in the USA. It cannot be ruled out that your data collected by Facebook will also be transmitted to the USA.


You can find more details on data protection in our privacy policy.
You can also find information about how Google uses personal data by following this link.