Log in
Log in

or
Learning
Comment

Understanding Directivity

Speaker specifications explained - Part 2

The directivity of a speaker is an important characteristic when defining the size of the listening zone, and it determines how the frequencies will balance, depending on the position of the listener.

View other articles in this series...

The problem is that it’s impossible to have a constant directivity for all audible frequencies. Which results in it being pretty hard to get an identical level and frequency response for every listening position.

Definition and graphical representation

Directivity can be described as the frequency response relative to the listening position. Sound pressure level is measured at different points by placing a mic in a circle whose center is the speaker (in practice, the speaker is turned at different angles for each measurement during the test). This is done for the different frequency bands the speaker covers. This way you get polar plots where you can read the sound dispersion depending on the frequency, both on the vertical and horizontal axis. The central axis corresponds to 0°, perpendicular to the cabinet’s plane. The mic ought to be centered on the most directive element, namely the tweeter, and at an adequate distance so that the readings are significant.

Enceintes de Sono : 02 A LT9403 Horizontal Polar Diagram partiel
Three (out of 9) horizontal polar plots of a Bose LT9403. Around the circle are the angle measurements in degrees. On the vertical axis, you can read a scale indicating the level attenuation (in dB) in relation to the axis. [Bose Documentation](#)

The isobar diagram in another type of representation. It shows the frequency on the horizontal axis and the angle in relation to the speaker on the vertical axis. The different zones delimited by the curves represent differences in acoustic pressure in relation to the central axis. Finally, for a quick overview, manufacturers often display the directivity in the form of two mean values: one for the horizontal coverage angle and one for the vertical coverage angle (for example, h x v: 90° x 40°). In practice, a constant directivity across the entire spectrum is very hard to accomplish.

Enceintes de Sono : 02 B kh120 hor directivity 510
Isobar diagram representing the horizontal directivity of the Neumann KH102A speaker. The different colors — captioned at the top — represent the attenuation of the acoustic pressure, according to the angle (on the right) and frequency (at the bottom). The higher the frequency, the more directive the sound. [Neumann Documentation](#)

 

Physical constraints

Since the wavelength of high frequencies is much shorter than that of low frequencies (ranging from cm to tens of meters), speakers don’t have an identical dispersion angle across the entire frequency spectrum. Depending on whether you are on or off axis, you can tell a difference in timbre. The farther away from the axis, the faster high frequencies are attenuated compared to lows. And the more obvious the directivity differences between highs and lows, the more unbalanced the reverberated sound of the room at the speaker position.

 

Wavelength vs Frequency

The source, i.e. the speaker and its driver, ought to be large enough in relation to the wavelength of the frequencies that it reproduces, in order to keep control over the directivity. To try to control the dispersion angle in the bottom end you’d need gigantic and untransportable speakers.

Relationship between frequency and wavelength

Many efforts have been made to solve these directivity issues, especially in terms of tweeter design (hemispherical diaphragms, acoustic lenses, horn drivers, etc), to try to counteract their natural hyperdirectivity. In the low end, the idea of coupling several units to simulate a much bigger loudspeaker has been in use for quite some time. There are even so-called “cardioid” installations where several subs are placed in very specific positions. The idea behind this concept is to try to eliminate the dispersion of the sound wave from the back and the sides with the use of additional subs for a more precise control of the position, polarity, phase, and level. This allows you to attenuate unwanted reflections in a room and avoid them from interfering with the mics on stage. The downside is that it requires more gear and time to install.

← Previous article in this series:
Understanding Frequency Response
Next article in this series:
Understanding Impedance →

Would you like to comment this article?

Log in
Become a member
cookies
We are using cookies!

Yes, Audiofanzine is using cookies. Since the last thing that we want is disturbing your diet with too much fat or too much sugar, you'll be glad to learn that we made them ourselves with fresh, organic and fair ingredients, and with a perfect nutritional balance. What this means is that the data we store in them is used to enhance your use of our website as well as improve your user experience on our pages and show you personalised ads (learn more). To configure your cookie preferences, click here.

We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent
These are cookies that guarantee the proper functioning of Audiofanzine and allow its optimization. The website cannot function properly without these cookies. Example: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).
Audience analysis (Google Analytics)
We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it.
Advertising (Google Ads)
This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.
Marketing (Meta Pixel)

On our websites, we use the Meta Pixel. The Meta Pixel is a remarketing pixel implemented on our websites that allows us to target you directly via the Meta Network by serving ads to visitors of our websites when they visit the social networks Facebook and Instagram. The meta pixel are code snippets which are able to identify your browser type via the browser ID - the individual fingerprint of your browser - and to recognise that you have visited our websites and what exactly you have looked at on our websites. When you visit our websites, the pixel establishes a direct connection to Meta's servers. Meta is able to identify you by your browser ID, as this is linked to other data about you stored by Meta on your Facebook or Instagram user account. Meta then delivers individualised ads from us on Facebook or on Instagram that are tailored to your needs.

We ourselves are not in a position to identify you personally via the meta pixel, as apart from your browser ID no other data is stored with us via the pixel.

For more information about the Meta Pixel, the details of data processing via this service and Meta's privacy policy, please visit Meta Privacy Policy - How Meta collects and uses user data for Facebook and Meta Privacy Policy - How Meta collects and uses user data for Instagram.

Meta Platforms Ireland Ltd. is a subsidiary of Meta Platforms, Inc. based in the USA. It cannot be ruled out that your data collected by Facebook will also be transmitted to the USA.


We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent

These are cookies that guarantee the proper functioning of Audiofanzine. The website cannot function properly without these cookies. Examples: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).

Audience analysis (Google Analytics)

We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it. When this parameter is activated, no personal information is sent to Google and the IP addresses are anonymized.

Advertising (Google Ads)

This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.

Marketing (Meta Pixel)

On our websites, we use the Meta Pixel. The Meta Pixel is a remarketing pixel implemented on our websites that allows us to target you directly via the Meta Network by serving ads to visitors of our websites when they visit the social networks Facebook and Instagram. The meta pixel are code snippets which are able to identify your browser type via the browser ID - the individual fingerprint of your browser - and to recognise that you have visited our websites and what exactly you have looked at on our websites. When you visit our websites, the pixel establishes a direct connection to Meta's servers. Meta is able to identify you by your browser ID, as this is linked to other data about you stored by Meta on your Facebook or Instagram user account. Meta then delivers individualised ads from us on Facebook or on Instagram that are tailored to your needs.

We ourselves are not in a position to identify you personally via the meta pixel, as apart from your browser ID no other data is stored with us via the pixel.

For more information about the Meta Pixel, the details of data processing via this service and Meta's privacy policy, please visit Meta Privacy Policy - How Meta collects and uses user data for Facebook and Meta Privacy Policy - How Meta collects and uses user data for Instagram.

Meta Platforms Ireland Ltd. is a subsidiary of Meta Platforms, Inc. based in the USA. It cannot be ruled out that your data collected by Facebook will also be transmitted to the USA.


You can find more details on data protection in our privacy policy.
You can also find information about how Google uses personal data by following this link.