Log in
Log in

or
Learning
Comment

Frequency Modulation or FM Synthesis

Sound synthesis, sound design and audio processing - Part 21

In the fifteenth article of this series, I briefly mentioned FM while introducing the different forms of synthesis. Now, the time has finally come to discuss it, but before we do that I must first talk a bit about...

View other articles in this series...

Amplitude modulation or AM synthesis

In the fourteenth article we already saw ring modulation, and in the last two articles we saw how an envelope can be applied to a waveform (to create grains, remember?). Well, these two principles are directly related to amplitude modulation, too.

One of the points in common with ring modulation is that you have a carrier signal © whose amplitude is modulated by a modulating signal (M). The difference resides in the fact that, in ring modulation, the M waveform is “bipolar, ” meaning it oscillates from positive to negative values (above and below zero)

In amplitude modulation, however, the modulating signal is “unipolar, ” which means it only exists in the positive domain. And that’s how amplitude modulation relates to the principle of an envelope applied to another signal, in this case, an envelope that evolves only between 0 and 1. As long as the modulating signal M isn’t within the audible range — meaning it doesn’t exceed 20 Hz — it acts as an envelope on the carrier signal. The result is a sort of tremolo, as described in article 13 of this series.

However, when the frequency of M enters the audible range, it comes upon C to generate frequency sidebands, as with ring modulation (see article 14), which constitutes their second point in common. But there is a difference: While a ring modulator makes the frequency of the carrier wave disappear, it’s kept along with the sidebands in amplitude modulation.

Of frequency modulation, vibrato and radio

Okay, no more beating around the bush, after this brief, but necessary detour to describe amplitude modulation, we can finally address frequency modulation, also known as FM.

Just like amplitude modulation, FM synthesis is based on the principle of a carrier wave being modulated by a modulating wave. With the difference that this time around, the modulating signal doesn’t act on the amplitude of the carrier, but rather on its frequency.

La synthèse à modulation de fréquence (FM)

While amplitude modulation recalled the tremolo effect, with FM it’s the vibrato effect (also mentioned in the thirteenth article of this series) that comes to mind. In fact, FM synthesis could be considered an extreme form of this effect. And it was actually playing around with vibrato that Stanford’s John Chowning realized, back in the 1960s, that beyond a certain point, the vibrato effect disappeared to give way to the emergence of a complex harmonic signal. And, thus, FM synthesis was born!

Are you wondering what’s the difference with FM radio? It’s pretty simple: The only difference is that in FM radio the carrier can’t be heard because it’s in the frequency range from 87.5 MHz to 108 MHz. Let’s see now how all this works. 

Operators

FM synthesis doesn’t rely solely on the use of oscillators, but rather on so-called operators. An operator is the combination of a sine wave oscillator, a VCA/DCA and an envelope generator (for more on these concepts, refer to article 8).

The number of operators is unlimited. Operators can either modulate each other in terms of frequency, or their signals can be simply summed. This second approach goes beyond frequency modulation and is somewhat closer to additive synthesis!

Operators can also use their own signal as a modulating wave. This can result in very rich signals, but it can also result in a periodic sound being easily transformed into noise (see article 5).

And now, let’s see how the frequencies present in the signal behave.

Frequencies, anyone?

I’m talking about a complex signal, and rightly so! In fact, there isn’t a limit of two sidebands in FM like there is in AM synthesis. In theory, there’s no limit. This makes FM synthesis particularly interesting: With only two oscillators…sorry, operators!… you can get a signal that is extremely rich in harmonics. But it’s still far from additive synthesis, which would require a considerably larger number of oscillators (one per frequency element). By the way, FM synthesis forms part of a big family, called “animated spectrum” synthesis, which includes all forms of synthesis that produce a signal whose frequency content doesn’t require a filter to evolve (like the FM, AM and granular synthesis we’ve seen here). 

You could also say that FM synthesis is very similar to phase modulation, the only difference between them being the amplitude of the overtones (see next paragraph) they generate.

Each sideband corresponds to the carrier’s frequency plus or minus an integer multiple of the modulating frequency. Theoretically, this integer can be any value, which would result in an infinite number of frequency values, something that is obviously impossible in the real world. But you’ll have to wait until the next article to learn more about that…!

← Previous article in this series:
The Different Forms of Granular Synthesis
Next article in this series:
The Frequency Spectrum in FM Synthesis →

Would you like to comment this article?

Log in
Become a member
cookies
We are using cookies!

Yes, Audiofanzine is using cookies. Since the last thing that we want is disturbing your diet with too much fat or too much sugar, you'll be glad to learn that we made them ourselves with fresh, organic and fair ingredients, and with a perfect nutritional balance. What this means is that the data we store in them is used to enhance your use of our website as well as improve your user experience on our pages and show you personalised ads (learn more). To configure your cookie preferences, click here.

We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent
These are cookies that guarantee the proper functioning of Audiofanzine and allow its optimization. The website cannot function properly without these cookies. Example: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).
Audience analysis (Google Analytics)
We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it.
Advertising (Google Ads)
This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.
Marketing (Meta Pixel)

On our websites, we use the Meta Pixel. The Meta Pixel is a remarketing pixel implemented on our websites that allows us to target you directly via the Meta Network by serving ads to visitors of our websites when they visit the social networks Facebook and Instagram. The meta pixel are code snippets which are able to identify your browser type via the browser ID - the individual fingerprint of your browser - and to recognise that you have visited our websites and what exactly you have looked at on our websites. When you visit our websites, the pixel establishes a direct connection to Meta's servers. Meta is able to identify you by your browser ID, as this is linked to other data about you stored by Meta on your Facebook or Instagram user account. Meta then delivers individualised ads from us on Facebook or on Instagram that are tailored to your needs.

We ourselves are not in a position to identify you personally via the meta pixel, as apart from your browser ID no other data is stored with us via the pixel.

For more information about the Meta Pixel, the details of data processing via this service and Meta's privacy policy, please visit Meta Privacy Policy - How Meta collects and uses user data for Facebook and Meta Privacy Policy - How Meta collects and uses user data for Instagram.

Meta Platforms Ireland Ltd. is a subsidiary of Meta Platforms, Inc. based in the USA. It cannot be ruled out that your data collected by Facebook will also be transmitted to the USA.


We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent

These are cookies that guarantee the proper functioning of Audiofanzine. The website cannot function properly without these cookies. Examples: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).

Audience analysis (Google Analytics)

We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it. When this parameter is activated, no personal information is sent to Google and the IP addresses are anonymized.

Advertising (Google Ads)

This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.

Marketing (Meta Pixel)

On our websites, we use the Meta Pixel. The Meta Pixel is a remarketing pixel implemented on our websites that allows us to target you directly via the Meta Network by serving ads to visitors of our websites when they visit the social networks Facebook and Instagram. The meta pixel are code snippets which are able to identify your browser type via the browser ID - the individual fingerprint of your browser - and to recognise that you have visited our websites and what exactly you have looked at on our websites. When you visit our websites, the pixel establishes a direct connection to Meta's servers. Meta is able to identify you by your browser ID, as this is linked to other data about you stored by Meta on your Facebook or Instagram user account. Meta then delivers individualised ads from us on Facebook or on Instagram that are tailored to your needs.

We ourselves are not in a position to identify you personally via the meta pixel, as apart from your browser ID no other data is stored with us via the pixel.

For more information about the Meta Pixel, the details of data processing via this service and Meta's privacy policy, please visit Meta Privacy Policy - How Meta collects and uses user data for Facebook and Meta Privacy Policy - How Meta collects and uses user data for Instagram.

Meta Platforms Ireland Ltd. is a subsidiary of Meta Platforms, Inc. based in the USA. It cannot be ruled out that your data collected by Facebook will also be transmitted to the USA.


You can find more details on data protection in our privacy policy.
You can also find information about how Google uses personal data by following this link.