Become a member
Become a member

or
Continue with Google
Log in
Log in

or
Log in using a Google account
learning
Comment

Subtractive Synthesis: Straight to the point

Sound synthesis, sound design and audio processing - Part 15
Share this article

Dear friends, now that we've become acquainted with the main components used, it's about time we get familiar with the main forms of sound synthesis. Oh, yes, there are several!

View other articles in this series...

For example, in the previous article, we talked abut ring modulation, which implies the modulation of a waveform by another one. But did you know that modulating a waveform with another one is the principle behind one of the most widespread methods of sound synthesis, called Frequency Modulation (FM), popularized by Yamaha and their emblematic DX7 synth? But let’s not get ahead of ourselves. Because before we study FM synthesis in an upcoming article, let’s take a look at the most widespread synthesis type. Let me introduce you to…subtractive synthesis! 

Description

Studying subtractive synthesis will allow us to revisit some elements we mentioned in the first articles of this series. Subtractive synthesis is based on the following principle: The frequencies of a harmonically rich signal are limited, with the use of filters, in order to shape sound. It’s a principle similar to that used in subtractive color synthesis when retouching an image. In subtractive synthesis you’ll find the classic signal path you already saw in previous articles: Oscillator(s) —> Filters (driven or not by an envelope) —> Amplifier (driven or not by an envelope).

La synthèse soustractive - Korg MS-20

As we already saw in article 4, rich audio signals are composed essentially of the following waveforms: Sawtooth, triangle and square. It wouldn’t be too interesting to apply a filter to a simple sine wave, since the latter has no harmonics, meaning it wouldn’t be affected by the filter as long as the cutoff frequency of the filter isn’t exactly the same as the one of the waveform itself. Hence, once both frequencies are the same, the waveform would be completely canceled — and with it the sound it represents. In other words, subtractive synthesis on a single sine wave would result in an On/Off effect. In fact, you don’t necessarily get such a clean cutoff, but the effect is very close to it.

Main representatives

La synthèse soustractive - Novachord

Subtractive synthesis — which, by the way, is not the oldest type of sound synthesis, as we will see in the upcoming articles — first appeared in the 1930s, with the Novachord manufactured by Hanert, Williams and Hammond (yes, the same guy responsible for the famous organs).

But the two most famous representatives in this category are the Minimoog by…Moog and the MS-20 by Korg. 

The former came out in 1970 and became an instant success, thanks in great part to one Keith Emerson. He was the first musician to use it live, and was responsible for developing many techniques for playing it.

La synthèse soustractive - Minimoog

This monodic synth (see articles 9 and 10), features 41 keys and three oscillators, one noise generator and an input for an external signal. The third oscillator and the noise generator can be routed to the CV inputs of the other oscillators and the filters. FYI, CV stands for Control Voltage, which is a parameter control protocol like the more “modern” MIDI (see article 11). However, unlike the latter, the CV protocol isn’t based on digital values, which weren’t as commonly accessible when it first appeared, but rather on electrical voltage variations. With this routing possibilities, the third VCO can be used as an LFO to modulate parameters.

Finally, it’s also worth noting that the filter itself can be made to oscillate, adding yet another sound source to the features of the synth. Furthermore, its 4-pole filter (see article 7) became Moog’s trademark sound and it can still be found on the brand’s modern products (like the Minimoog Voyager, a 2002 reinterpretation of the original Minimoog, and even the Little Phatty, launched in 2006 for example).

La synthèse soustractive - Korg MS-20

The other emblem of subtractive synthesis, the Korg MS-20, came out in 1978. Unlike the Minimoog, it has a semi-modular architecture. This means the user can use cables on the front panel to reroute audio signals or modulations towards other destinations.

Also monodic, the MS-20 features a 36-key keyboard, two VCOs, ones noise generator, one LFO, two VCFs (a 1-pole high-pass and a 2-pole low-pass), and two envelope generators. In addition, it has an external signal processor, which allows it to be controlled by the sound of another device or even a human voice.

All this, combined with the modularity we mentioned above, give it unusually extensive creative capabilities.

In the next article, we’ll examine mother of all other sound synthesis types: additive synthesis.

← Previous article in this series:
More Basic Synth Effects
Next article in this series:
Additive Synthesis ─ Give me more! →

Would you like to comment this article?

Log in
Become a member
cookies
We are using cookies!

Yes, Audiofanzine is using cookies. Since the last thing that we want is disturbing your diet with too much fat or too much sugar, you'll be glad to learn that we made them ourselves with fresh, organic and fair ingredients, and with a perfect nutritional balance. What this means is that the data we store in them is used to enhance your use of our website as well as improve your user experience on our pages and show you personalised ads (learn more). To configure your cookie preferences, click here.

We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent
These are cookies that guarantee the proper functioning of Audiofanzine and allow its optimization. The website cannot function properly without these cookies. Example: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).
Google Analytics
We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it.
Advertising
This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.

We did not wait for a law to make us respect our members and visitors' privacy. The cookies that we use are only meant to improve your experience on our website.

Our cookies
Cookies not subject to consent

These are cookies that guarantee the proper functioning of Audiofanzine. The website cannot function properly without these cookies. Examples: cookies that help you stay logged in from page to page or that help customizing your usage of the website (dark mode or filters).

Google Analytics

We are using Google Analytics in order to better understand the use that our visitors make of our website in an attempt to improve it. When this parameter is activated, no personal information is sent to Google and the IP addresses are anonymized.

Advertising

This information allows us to show you personalized advertisements thanks to which Audiofanzine is financed. By unchecking this box you will still have advertisements but they may be less interesting :) We are using Google Ad Manager to display part of our ads, or tools integrated to our own CMS for the rest. We are likely to display advertisements from our own platform, from Google Advertising Products or from Adform.


You can find more details on data protection in our privacy policy.
You can also find information about how Google uses personal data by following this link.